16 research outputs found

    Sequence to Sequence Learning for Query Expansion

    Full text link
    Using sequence to sequence algorithms for query expansion has not been explored yet in Information Retrieval literature nor in Question-Answering's. We tried to fill this gap in the literature with a custom Query Expansion engine trained and tested on open datasets. Starting from open datasets, we built a Query Expansion training set using sentence-embeddings-based Keyword Extraction. We therefore assessed the ability of the Sequence to Sequence neural networks to capture expanding relations in the words embeddings' space.Comment: 8 pages, 2 figures, AAAI-19 Student Abstract and Poster Progra

    Big model only for hard audios: Sample dependent Whisper model selection for efficient inferences

    Full text link
    Recent progress in Automatic Speech Recognition (ASR) has been coupled with a substantial increase in the model sizes, which may now contain billions of parameters, leading to slow inferences even with adapted hardware. In this context, several ASR models exist in various sizes, with different inference costs leading to different performance levels. Based on the observation that smaller models perform optimally on large parts of testing corpora, we propose to train a decision module, that would allow, given an audio sample, to use the smallest sufficient model leading to a good transcription. We apply our approach to two Whisper models with different sizes. By keeping the decision process computationally efficient, we build a decision module that allows substantial computational savings with reduced performance drops.Comment: Submitted to ICASSP 202

    Pretext Tasks selection for multitask self-supervised speech representation learning

    Full text link
    Through solving pretext tasks, self-supervised learning leverages unlabeled data to extract useful latent representations replacing traditional input features in the downstream task. In audio/speech signal processing, a wide range of features where engineered through decades of research efforts. As it turns out, learning to predict such features (a.k.a pseudo-labels) has proven to be a particularly relevant pretext task, leading to useful self-supervised representations which prove to be effective for downstream tasks. However, methods and common practices for combining such pretext tasks for better performance on the downstream task have not been explored and understood properly. In fact, the process relies almost exclusively on a computationally heavy experimental procedure, which becomes intractable with the increase of the number of pretext tasks. This paper introduces a method to select a group of pretext tasks among a set of candidates. The method we propose estimates calibrated weights for the partial losses corresponding to the considered pretext tasks during the self-supervised training process. The experiments conducted on automatic speech recognition, speaker and emotion recognition validate our approach, as the groups selected and weighted with our method perform better than classic baselines, thus facilitating the selection and combination of relevant pseudo-labels for self-supervised representation learning

    Automatic Data Augmentation for Domain Adapted Fine-Tuning of Self-Supervised Speech Representations

    Full text link
    Self-Supervised Learning (SSL) has allowed leveraging large amounts of unlabeled speech data to improve the performance of speech recognition models even with small annotated datasets. Despite this, speech SSL representations may fail while facing an acoustic mismatch between the pretraining and target datasets. To address this issue, we propose a novel supervised domain adaptation method, designed for cases exhibiting such a mismatch in acoustic domains. It consists in applying properly calibrated data augmentations on a large clean dataset, bringing it closer to the target domain, and using it as part of an initial fine-tuning stage. Augmentations are automatically selected through the minimization of a conditional-dependence estimator, based on the target dataset. The approach is validated during an oracle experiment with controlled distortions and on two amateur-collected low-resource domains, reaching better performances compared to the baselines in both cases.Comment: 6 pages,INTERSPEECH 202

    Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition

    Full text link
    Crafting an effective Automatic Speech Recognition (ASR) solution for dialects demands innovative approaches that not only address the data scarcity issue but also navigate the intricacies of linguistic diversity. In this paper, we address the aforementioned ASR challenge, focusing on the Tunisian dialect. First, textual and audio data is collected and in some cases annotated. Second, we explore self-supervision, semi-supervision and few-shot code-switching approaches to push the state-of-the-art on different Tunisian test sets; covering different acoustic, linguistic and prosodic conditions. Finally, and given the absence of conventional spelling, we produce a human evaluation of our transcripts to avoid the noise coming from spelling inadequacies in our testing references. Our models, allowing to transcribe audio samples in a linguistic mix involving Tunisian Arabic, English and French, and all the data used during training and testing are released for public use and further improvements.Comment: 6 pages, submitted to ICASSP 202

    Speech Self-Supervised Representation Benchmarking: Are We Doing it Right?

    Full text link
    Self-supervised learning (SSL) has recently allowed leveraging large datasets of unlabeled speech signals to reach impressive performance on speech tasks using only small amounts of annotated data. The high number of proposed approaches fostered the need and rise of extended benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, and while the number of considered tasks has been growing, most rely upon a single decoding architecture that maps the frozen SSL representations to the downstream labels. This work investigates the robustness of such benchmarking results to changes in the decoder architecture. Interestingly, it appears that varying the architecture of the downstream decoder leads to significant variations in the leaderboards of most tasks. Concerningly, our study reveals that benchmarking using limited decoders may cause a counterproductive increase in the sizes of the developed SSL models.Comment: 6 page

    CL-MASR: A Continual Learning Benchmark for Multilingual ASR

    Full text link
    Modern multilingual automatic speech recognition (ASR) systems like Whisper have made it possible to transcribe audio in multiple languages with a single model. However, current state-of-the-art ASR models are typically evaluated on individual languages or in a multi-task setting, overlooking the challenge of continually learning new languages. There is insufficient research on how to add new languages without losing valuable information from previous data. Furthermore, existing continual learning benchmarks focus mostly on vision and language tasks, leaving continual learning for multilingual ASR largely unexplored. To bridge this gap, we propose CL-MASR, a benchmark designed for studying multilingual ASR in a continual learning setting. CL-MASR provides a diverse set of continual learning methods implemented on top of large-scale pretrained ASR models, along with common metrics to assess the effectiveness of learning new languages while addressing the issue of catastrophic forgetting. To the best of our knowledge, CL-MASR is the first continual learning benchmark for the multilingual ASR task. The code is available at https://github.com/speechbrain/benchmarks.Comment: 16 pages, 5 figures, 5 table
    corecore